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in computational acoustics, among them the explicit DRP
[12], implicit (or compact) [8, 11], and ENO schemes [6].In this paper, we investigate accurate and efficient time advancing

methods for computational acoustics, where nondissipative and In this paper, we investigate accurate and efficient time-
nondispersive properties are of critical importance. Our analysis advancing schemes for computational acoustics. In particu-
pertains to the application of Runge–Kutta methods to high-order lar, the family of Runge–Kutta methods is considered. The
finite difference discretization. In many CFD applications, multistage

present analysis pertains to the application of Runge–Runge–Kutta schemes have often been favored for their low storage
Kutta methods to high-order finite difference schemes.requirements and relatively large stability limits. For computing

acoustic waves, however, the stability consideration alone is not In many CFD applications, popular time-advancing
sufficient, since the Runge–Kutta schemes entail both dissipation schemes are the classical third- and fourth-order Runge–
and dispersion errors. The time step is now limited by the tolerable Kutta schemes because they provide relatively large stabil-
dissipation and dispersion errors in the computation. In the present

ity limits [10]. For acoustic calculations, however, thepaper, it is shown that if the traditional Runge–Kutta schemes are
stability consideration alone is not sufficient, since theused for time advancing in acoustic problems, time steps greatly

smaller than those allowed by the stability limit are necessary. Low- Runge–Kutta schemes retain both dissipation and disper-
dissipation and low-dispersion Runge–Kutta (LDDRK) schemes are sion errors. The numerical solutions need to be time accu-
proposed, based on an optimization that minimizes the dissipation rate to resolve the wave propagation. In this paper, we
and dispersion errors for wave propagation. Optimizations of both

show that when the classical Runge–Kutta schemes aresingle-step and two-step alternating schemes are considered. The
used in wave propagation problems using high-order spa-proposed LDDRK schemes are remarkably more efficient than the

classical Runge–Kutta schemes for acoustic computations. More- tial finite difference, time steps much smaller than those
over, low storage implementations of the optimized schemes are allowed by the stability limit are necessary in the long-
discussed. Special issues of implementing numerical boundary con- time integrations. This certainly undermines the efficiency
ditions in the LDDRK schemes are also addressed. Q 1996 Academic

of the classical Runge–Kutta schemes.Press, Inc.

Runge–Kutta schemes are multistage methods. Tradi-
tionally, the coefficients of the Runge–Kutta schemes are
chosen such that the maximum possible order of accuracy1. INTRODUCTION
is obtained for a given number of stages. However, it will

Computational acoustics is a recently emerging tool for be shown that it is possible to choose the coefficients of
acoustic problems. In this approach, the acoustic waves the Runge–Kutta schemes so as to minimize the dissipation
are computed directly from the governing equations of the and dispersion errors for the propagating waves, rather
compressible flows, namely, the Euler equations or the than to obtain the maximum possible formal order of
Navier–Stokes equations. Special needs of numerical accuracy. The optimization also does not compromise the
schemes for computational acoustics have been indicated stability considerations. The optimized schemes will be
in recent works (e.g., [9, 12]). It has been recognized that referred to as low-dissipation and low-dispersion Runge–
numerical schemes that have minimal dispersion and dissi- Kutta (LDDRK) schemes. Consequently, remarkably
pation errors are desired, since the acoustic waves are larger time steps can be used in the LDDRK schemes,
nondispersive and nondissipative in their propagation. In which therefore increases the efficiency of the computa-
this regard, it has appeared that high-order schemes would tion. The optimized four-, five- and six-stage schemes are
be more suitable for computational acoustics than the proposed in the present paper. In addition, optimized two-
lower-order schemes since the former are usually less dis- step schemes are also given in which different coefficients
persive and less dissipative. Recently, high-order spatial are used in the alternating steps. It is found that when

two steps are coupled for optimization, the dispersion anddiscretization schemes have gained considerable interests
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dissipation errors can be further reduced and a higher 2. FOURIER ANALYSIS OF HIGH-ORDER
SPATIAL DISCRETIZATIONformal order of accuracy can be retained.

Optimization of numerical schemes for wave propaga-
In this section, the results of Fourier analysis of high-tion problems has been conducted in several recent

order finite difference schemes are reviewed briefly [14].studies (e.g., [8, 12, 16]). In [12], an Adams–Bashforth-
For simplicity of discussion, we consider the convectivetype multistep time integration scheme was optimized
wave equationfor acoustic calculations. In that work, the optimization

was carried out to preserve the numerical frequency in
the development of dispersion-relation-preserving finite
difference schemes. In [16], a six-stage Runge–Kutta u

t
1 c

u
x

5 0. (2.1)
scheme was optimized for linear wave propagation. Most
recently, optimization of five-stage Runge–Kutta schemes
was considered in [8] for long-time integration, in which Let the spatial derivative be approximated by a central
optimized coefficients were given, depending on the spec- difference scheme with a uniform mesh of spacing Dx as
trum of the initial condition. There are, however, differ-
ences between the present and previous works in several
aspects. First, the optimization of time advancing is
separate from the spatial discretization schemes. The Su

xDj
5

1
Dx ON

l52N
aluj1l (2.2)

optimization is done once and for all. The proposed
LDDRK schemes are applicable to different spatial dis-
cretization methods. Second, the optimization is carried in which a central difference stencil has been used. In (2.2)
out only for the resolved wavenumbers in the spatial uj represents the value of u at x 5 xj and the al are the
discretization. It will be shown that LDDRK schemes coefficients of the difference scheme. Applying the spatial
preserve the frequency in the time integration and thus discretization (2.2) to (2.1), a semi-discrete equation is
are dispersion relation preserving in the sense of [12]. obtained as
Third, optimizations of two coupled Runge–Kutta steps
are considered for the first time. Our results indicate
that the two-step schemes offer better properties and uj

t
1

c
Dx ON

l52N
aluj1l 5 0are more efficient than the optimized single-step schemes.

The advantages of Runge–Kutta methods also include
low storage requirements in their implementations, as
compared to Adams–Bashforth-type multistep methods. at interior points. Using Fourier analysis, it is easy to show
The low storage requirement is important for computa- that the semi-discrete equation yields
tional acoustics applications where large memory use is
expected. In the past, it has been shown that the three-
stage third-order scheme can be implemented with only ũ

t
1 ick*ũ 5 0, (2.3)two levels of storage. Recently, the fourth-order scheme

has been put into a two-level format using five stages
in [4]. We point out that, in light of recent studies,
most of the LDDRK schemes proposed here can be where ũ is the spatial Fourier transform of u and k* is an
implemented with two levels of storage, since the number effective wavenumber:
of stages is larger than the formal order of accuracy
retained in all schemes except one.

The rest of the paper is organized as follows. In Section
k* 5

2i
Dx ON

l52N
aleilkDx, (2.4)2, the results of Fourier analysis of high-order finite

difference schemes are reviewed briefly. Then, time ad-
vancing with Runge–Kutta methods is described in Sec-
tion 3, in which the dissipation and dispersion errors k is the actual wavenumber, and i 5 Ï21.

Thus k* of (2.4) is seen as an approximation to the actualare analyzed using the notion of an amplification factor.
The optimization process and LDDRK schemes are given wavenumber k. Moreover, we note that the nondimension-

alized effective wavenumber k* Dx as a function of k Dxin Section 4 and low-storage implementations are dis-
cussed in Section 5. Special issues of implementing bound- is a property of the finite difference scheme, depending

only on the coefficients of the scheme al . (Similar analysisary conditions are discussed in Section 6. Section 7
contains the conclusions. can also be performed for implicit finite difference
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Also listed in Table I are the values of maximum effec-
tive wavenumber k*max Dx. The value of k*max Dx affects the
stability considerations, as will be seen below. Clearly,
when finite difference schemes are used for the spatial
discretization, only the long waves (i.e., for k # k*c ) are
resolved within a given accuracy.

3. TIME ADVANCING WITH RUNGE–KUTTA
SCHEMES

We now consider the time advancing schemes. In partic-
ular, the Runge–Kutta methods will be considered in the
present paper. For convenience of discussion, a general
explicit Runge–Kutta scheme is described below. Let the
time evolution equation be written as

U
t

5 F(U) (3.1)

in which U represents the vector containing the solution
values at spatial mesh points and the operator F contains

FIG. 1. Numerical wave number k* Dx versus the actual wave number the discretization of spatial derivatives. For simplicity, we
k Dx for several high-order finite difference schemes. ——— 5-point 4th- shall assume that F does not depend on t explicitly.
order [7]; – – – 7-point 4th-order [13]; — — — 9-point 6th-order; - - - 11-

An explicit, p-stage Runge–Kutta scheme advances thepoint 6th-order; –-– 5-point compact [11].
solution from time level t 5 tn to tn 1 Dt as

schemes, such as the compact schemes [8, 11]). In Fig. 1, Un11 5 Un 1 Op
i51

wi Ki , (3.2)
k* Dx as a function of k Dx is plotted for several high-
order spatial discretization schemes. It is observed that

wherek* Dx approximates k Dx adequately for only a limited
range of the long waves. For convenience, the maximum
resolvable wavenumber will be denoted by k*c . Using the

Ki 5 Dt F(Un 1 Oi21

j51
bij Kj ), i 5 1, 2, ..., p. (3.3)criterion uk* Dx 2 k Dxu , 0.005, a list of k*c Dx values for

high-order central difference schemes is given in Table I.
Often the ‘‘resolution’’ of spatial discretization is repre- In the above, wi and bij are constant coefficients of the
sented by the minimum points-per-wavelength needed to particular scheme.
reasonably resolve the wave. Here the points-per-wave- The choice of the time step Dt is an important issue in
length value will be computed as 2f/k*c Dx. the Runge–Kutta schemes. One criterion for the time step

is that the time integration be stable. The time integration
would be considered as stable if the step size is limited by

TABLE I the stability boundary, usually from the ‘‘foot print’’ of
the particular Runge–Kutta scheme. For references, theValues of k*c Dx and k*max Dx for Several High-Order Central

Difference Schemes of the Spatial Derivative stability ‘‘foot prints’’ of the classical third- and fourth-
order Runge–Kutta schemes are shown in Fig. 2 in the

Resolution complex l Dt plane, where l is the eigenvalue of the linear-
Spatial discretization k*c Dx (points-per-wavelength) k*max Dx

ized operator of F(U) in (3.1).
To get time accurate solutions, however, the time step5-point 4th-order [7] 0.7 9.0 1.4

7-point 4th-order [13]a 1.16 5.4 1.65 Dt is now limited by the tolerable dissipation and dispersion
9-point 6th-ordera 1.31 4.8 1.77 errors, in addition to the stability considerations. Consider,
11-point 6th-ordera 1.48 4.2 1.9 for example, the semi-discrete equation (2.3) of the convec-
5-point 6th-order compact 1.36 4.6 2.0

tive wave equation (2.1) and suppose that the classical[11]
fourth-order Runge–Kutta scheme is used. Here, the ei-

a The scheme has been optimized to have maximum k*c Dx. genvalue is 2ick* and k* is real for central difference
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Ũn11
k 5 Ũn

k S1 1 Op
j51

cj (2ick* Dt) jD
in which cj are constants related to the coefficients in (3.2)
and (3.3). (The specific relations are given later.) Ũn

k is the
spatial Fourier transform of Un. This yields a numerical
amplification factor

r 5
Ũn11

k

Ũn
k

5 1 1 Op
j51

cj(2is) j, (3.4)

where s 5 ck* Dt. The exact amplification factor, on the
other hand, is found to be

re 5 e2ick*
Dt 5 e2is. (3.5)

FIG. 2. Stability foot-prints of the third-order (rk3) and fourth-order
(rk4) schemes. l is the eigenvalue of the linearized operator F in (3.1).
Indicated are the stability limits on the imaginary axis.

schemes. Thus, from Fig. 2, the fourth-order Runge–Kutta
scheme should be stable if Dt is chosen such that

ck*max Dt # 2.83

in which k*max is the maximum effective wavenumber of
the spatial difference scheme. Figure 3 shows the computa-
tional results of the convective wave equation, where sev-
eral different values of Dt have been used, i.e., ck*max Dt 5
2.83, 2.0, 1.0. In these calculations, the initial value when
t 5 0 is a Gaussian profile u0 5 0.5e2(ln2)(x/3)2

and the wave
speed c 5 1. We take Dx 5 1. Numerical results at t 5
400 are shown. Since our purpose is to demonstrate the
time integration schemes, a nine-point central difference
scheme has been used for the spatial discretization in the
calculations presented. The exact solution at t 5 400 is
a translated Gaussian profile centered at x 5 400. The
numerical solutions, however, exhibit serious dissipation
and dispersion errors for the first two cases. This example
shows that, to get time accurate solutions, time steps much
smaller than that allowed by the stability limit are necessary
when the classical Runge–Kutta schemes are used.

To analyze the numerical errors in the Runge–Kutta
schemes, we consider the amplification factor of the
schemes, i.e., the ratio of the numerical solution at time

FIG. 3. Numerical examples of the convective wave equation
levels n 1 1 and n in the wavenumber domain. From

u/t 1 u/x 5 0. The classical four-stage fourth-order Runge–Kutta
the semi-discrete equation (2.3), it is easy to find that the scheme is used. A nine-point central difference scheme has been used

for the spatial discretization: - - - - - -, exact; —s—, numerical; t 5 400.Runge–Kutta scheme leads to
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The numerical amplification factor r in (3.4) is seen as and fourth-order Runge–Kutta scheme are plotted in Fig.
4. Only the values for positive ck* Dt are shown, since urua polynomial approximation to the exact factor e2is. In

fact, the order of a Runge–Kutta scheme is indicated by and d are even and odd functions, respectively. Using the
criteria, say, that u uru 2 1u # 0.001 and ud u # 0.001, it isthe number of leading coefficients in (3.4) that match the

Taylor series expansion of e2is. For instance, the classical found that the numerical solution would be time accurate
for ck* Dt # 0.5 and ck* Dt # 0.67 in the third- and fourth-four-stage fourth-order Runge–Kutta scheme has the coef-

ficients c1 5 1, c2 5 1/2!, c3 5 1/3!, c4 5 1/4!. Consequently, order Runge–Kutta schemes, respectively.
Following the above analysis, we let R denote the stabil-the maximum possible order of a p-stage scheme is p (at

least in linear cases). ity limit of ck* Dt; i.e., the scheme is stable for ck* Dt #
R, and we let L denote the accuracy limit; i.e., the solutionTo compare the numerical and exact amplification fac-

tors, we express the ratio r/re as is time accurate for ck* Dt # L. Then, it is necessary for
the time advancing scheme to be both stable for all wave-
numbers and accurate for resolved wavenumbers. Theser

re
5 urue2id. (3.6) considerations lead to the following conditions of de-

termining Dt for the convective wave equation:
In this expression, uru represents the dissipation rate (or
the dissipation error), where the exact value should be 1,
and d represents the phase error (or the dispersion error), ck*c Dt # L (3.7a)
where the exact value should be 0. It is easily seen from

ck*max Dt # R. (3.7b)(3.4) that uru and d are functions of ck* Dt. Furthermore,
they are properties of the given Runge–Kutta scheme and
depend only on the coefficients of the scheme. The dissipa-
tion rate uru and the dispersion error d of the classical third- That is, in nondimensional terms,

FIG. 4. Dissipation and phase errors of the classical three-stage third-order (rk3) and four-stage fourth-order (rk4) Runge–Kutta schemes. L
and R are the accuracy and stability limits, respectively.
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TABLE II
c

Dt
Dx

5 min S L

k*c Dx
,

R

k*max Dx
D . (3.8)

Optimized Coefficients for the Amplification Factor (3.4)

Stages c3 c4 c5 c6 L R
Thus, the accuracy limit would give a smaller time step

4 0.162997 0.0407574 — — 0.85 2.85whenever
5 0.166558 0.0395041 0.00781071 — 1.35 3.54
6 1/3! 1/4! 0.00781005 0.00132141 1.75 1.75

L
R

,
k*c

k*max

.
Note. L and R are the accuracy and stability limits, respectively. All

the schemes have at least second-order formal accuracy; i.e., c1 5 1, c2 5 As.

The above is usually true for the classical Runge–Kutta
schemes with the high-order finite differences in which

been carried out. At least second-order accuracy has beenk*c is not too much smaller than k*max (Table I).
retained; i.e., c1 5 1 and c2 5 As for all the schemes and
fourth-order accuracy has been retained in the optimized4. LOW-DISSIPATION AND LOW-DISPERSION
six-stage schemes. The optimized coefficients are given inRUNGE–KUTTA SCHEMES
Table II. Also listed are the respective accuracy and stabil-

4.1. Minimizing the Dissipation and Dispersion Errors ity limits of the optimized schemes. The accuracy limits L
are determined using the criteria u uru 2 1u # 0.001 andTo optimize the Runge–Kutta schemes, we modify the
ud u # 0.001. The value of G used in (4.1) has been variedcoefficients cj in the amplification factor (3.4) such that the
such that the accuracy limit L is as large as possible. Thedissipation and the dispersion errors are minimized and
dissipation and dispersion errors of the optimized schemesthe accuracy limit L is extended as much as possible. This
are plotted in Fig. 5. Plotted in dotted lines are the errorsis in contrast to the traditional choice of cj that maximizes
of unoptimized scheme in which the coefficients cj equalthe possible order of accuracy. The optimized schemes
those of the Taylor expansion of e2is.will be referred to as low-dissipation and low-dispersion

Table II shows that the optimized five-stage scheme canRunge–Kutta (LDDRK) schemes. In this paper, the opti-
be more efficient than the four-stage scheme, as the in-mization is carried out by minimizing ur 2 reu2 as a function
crease in the accuracy limit outweighs the cost of the addi-of ck* Dt. It can be shown that this minimizes the approxi-
tional stage incurred. On the other hand, the optimizedmate sum of the dissipation and dispersion errors (see
six-stage scheme has a smaller stability limit than the five-Appendix A). In addition, a certain formal order of accu-
stage scheme, although the accuracy limit is larger. Thisracy of the scheme is retained in the optimization process.
scheme, perhaps, is more useful for spectral methods thanThus, the coefficients cj will be determined, initially, such
finite difference methods [3].that the following integral is a minimum:

4.2. Optimized Two-Step Alternating Schemes

EG

0
U1 1 Op

j51
cj (2is) j 2 e2isU2

ds 5 MIN, (4.1) In two-step alternating schemes, we consider schemes in
which different coefficients are employed in the alternating
steps. The advantages of the alternating schemes are that,where G specifies the range of ck* Dt in the optimization.
when two steps are combined in the optimization, the dis-This leads to a simple constrained minimum problem which
persion and the dispersion errors can be further reducedyields a linear system for cj . However, since the stability
and higher order of accuracy can be maintained.condition uru # 1 is not imposed explicitly in minimizing

Let the amplification factors of the first and the second(4.1), the initial optimized schemes are found to be weakly
steps beunstable (1 , uru , 1.001) for some narrow region of the

wavenumber. The coefficients, then, are modified slightly
by a perturbation technique so that uru # 1 is satisfied r1 5 1 1 Op1

j51
aj (2is) j (4.2a)

within the given stability limit. Once the values of cj have
been determined, the actual coefficients of the Runge–
Kutta schemes, i.e., wi and bij , can be found accordingly. r2 5 1 1 Op2

j51
bj (2is) j, (4.2b)

Specific implementation will be discussed in Section 5. This
optimization process can also be viewed as preserving the
frequency (Appendix B) and, thus, is dispersion-relation- where p1 and p2 are the number of stages of the two steps,

respectively. Accordingly, the scheme will be denoted aspreserving in the sense of [12].
Optimizations of four-, five-, and six-stage schemes have p1–p2 scheme below. It is easy to see that the amplification
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FIG. 5. Dissipation and phase errors of the optimized schemes. Dotted line is the unoptimized scheme: (a) and (b), four-stage; (c) and (d), 5-
stage; (e) and (f), 6-stage.

factor for these two steps combined equals r1r2 . The exact Optimized coefficients for 4-6 and 5-6 schemes are
given in Table III. In both schemes, fourth-order accuracyamplification factor, on the other hand, is r2

e . Again, we
has been maintained for each step. Thus, the first stepnow choose the coefficients aj and bj such that ur1r2 2 r2

e u
in the 4-6 scheme is actually the same as the traditionalis minimized. That is, the coefficients in the alternating
four-stage fourth-order Runge–Kutta scheme. The dissi-steps will be determined such that the following integral
pation and dispersion errors are shown in Fig. 6 andis a minimum:
the stability footprints are given in Fig. 7. For efficiency,
we note that the computational cost of the 4-6 alternatingEG

0
US1 1 Op1

j51
aj (2is) jDS1 1 Op2

j51
bj (2is) jD2 e22isU2

ds scheme is comparable to that of five-stage schemes while
that of the 5-6 scheme is slightly higher. However, the
4-6 and 5-6 schemes are fourth-order accurate, whereas5 MIN. (4.3)
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TABLE III mized schemes, averaged by the number of stages of the
scheme in Table IV. The increase in the accuracy limit perOptimized Coefficients for the 4-6 and 5-6 Schemes of (4.2)
stage will result in the increase in the allowable time step

Scheme Step Stages a5/b5 a6/b6 L R when the computational cost is held the same. Here, the
optimized 4-6 scheme and 5-6 scheme are counted as 5

4-5 1 4 — — 1.64 2.52 and 5.5 stages per time step, respectively. Table IV shows
2 6 0.0162098 0.00286365

that, for the chosen accuracy, the efficiency of optimized
schemes can be as much as twice that of the unoptimized5-6 1 5 0.00361050 — 2.00 2.85

2 6 0.0121101 0.00285919 ones. This is found to be consistent with the numerical
examples of Figs. 3 and 8. Another example is given in

Note. Fourth-order accuracy has been retained in each step, i.e., a1 5 Fig. 9 in which the spherical wave equation,
b1 5 1, a2 5 b2 5 As, a3 5 b3 5 Ah, a4 5 b4 5 sQf. L and R are the accuracy
and stability limits of each step.

u
t

1
u
r

1
u
r

5 0,

the optimized single-step five-stage scheme is second-
order accurate. is solved using the optimized 5-6 scheme as well as the

unoptimized third- and fourth-order schemes. The timeNumerical examples of the optimized schemes are shown
in Fig. 8, with the same Gaussian initial condition as Fig. steps, Dt 5 0.152, 0.83, and 1.11 for the optimized 5-6

scheme and the traditional third- and fourth-order3. By and large, it has been observed that the optimized
two-step alternating schemes appear to be more efficient schemes, respectively, are chosen such that the total num-

ber of stages remains the same in the three calculations.than the single-step optimized schemes.
To further demonstrate the increase in efficiency, we Thus, computational costs are comparable. A boundary

condition, u 5 sin((f/4)t), is applied at r 5 5 and the wavecompare the accuracy limits of the optimized and unopti-

FIG. 6. Dissipation and phase errors of the optimized fourth-order two-step alternating schemes: (a) and (b), 4-6 scheme; (c) and
(d), 5-6 scheme.
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FIG. 7. Stability footprints of the optimized schemes: (a) single step; (b) fourth-order two-step alternating schemes. Indicated are the stability
limits on the imaginary axis.

is propagating into the region r . 5 with a front at r 5 the LDDRK schemes proposed here with two levels of
storage, since the number of stages is larger than the formalt 1 5. The exact solution is
order of accuracy retained in all schemes except one
(namely the 4-6 scheme). The particular implementation

u 5
5
r

sin Sf
4

(t 2 r 1 5)DH(t 2 r 1 5), of the two-level format, however, will be given elsewhere.
In what follows, a low storage implementation of LDDRK
schemes for linear problems is outlined.where H is the step function. Numerical results near the

For linear problems, the following implementation iswave front are shown in Fig. 9 for t 5 100, 200, and 300.
convenient for a p-stage scheme. Let the time evolutionThe dissipation and dispersion errors of the traditional
equation be given as (3.1). Thenschemes are evident while the results of the 5-6 scheme

are more accurate. Consequently, to gain accuracy in this 1. For i 5 1 ? ? ? p, compute (with b1 5 0)
computation, smaller time steps are necessary for the unop-
timized schemes, which renders them less efficient. Ki 5 DtF(Un 1 bi Ki21 ). (5.1a)

5. LOW STORAGE IMPLEMENTATION OF
2. ThenLDDRK SCHEMES

In this section, we study the implementation of the Un11 5 Un 1 Kp . (5.1b)
LDDRK schemes. Particularly, we will be interested in the
implementations that require low memory storages. The The coefficients bi in (5.1) are related to the coefficients
low storage requirement is important in computational cj of the amplification factor of LDDRK schemes as
acoustics applications, where large memory use is ex- follows:
pected, especially for 3D problems. In the past, it has been
shown that the three-stage third-order Runge–Kutta

c2 5 bpscheme can be cast in a two-level format but not the four-
stage fourth-order schemes [15]. Recently a fourth-order c3 5 bp bp21 (5.2)
Runge–Kutta scheme has been designed with two levels

? ? ?
of storages using five stages [4]. In light of the recent
studies, we note that it is possible to implement most of cp 5 bp bp21 ? ? ? b2 .
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boundary conditions are described with an example using
the linearized Euler equations.

Often the physical boundary conditions are given in the
form of differential equations, such as the characteristics-
based boundary conditions or the boundary conditions
based on the asymptotic forms of the far field solutions [1,
12]. When boundary conditions are coupled with governing
equations of the interior grids, it is not immediately clear
as to how the Ki’s in the Runge–Kutta time integration
process should be computed at the boundaries.

For simplicity, we assume that the problem is linear or
can be linearized at the boundaries. To examine the situa-
tion around the boundary grid points, we note that Ki is
related to the time derivatives of the solution U, rather
than being some ‘‘intermediate’’ value of the solution [5].
Specifically, for the iterations of (5.1) for linear problems,
we have

K1 5 Dt
U
t

K2 5 Dt
U
t

1 b2 Dt2 2U
t2

K3 5 Dt
U
t

1 b3 Dt2 2U
t2 1 b3 b2 Dt3 3U

t3

K4 5 Dt
U
t

1 b4 Dt2 2U
t2 1 b4 b3 Dt3 3U

t3

1 b4 b3 b2 Dt4 4U
t4 (6.1)

K5 5 Dt
U
t

1 b5 Dt2 2U
t2 1 b5 b4 Dt3 3U

t3

1 b5 b4 b3 Dt4 4U
t4 1 b5 b4 b3 b2 Dt5 5U

t5

FIG. 8. Numerical examples of the convective wave equation using K6 5 Dt
U
t

1 b6 Dt2 2U
t2 1 b6 b5 Dt3 3U

t3optimized schemes: - - -, exact; —s—, numerical; t 5 400.

1 b6 b5 b4 Dt4 4U
t4 1 b6 b5 b4 b3 Dt5 5U

t5

The above scheme can also be applied to nonlinear prob-
1 b6 b5 b4 b3 b2 Dt6 6U

t6lems, but it will be formally second-order, in general [3,
10]. This implementation requires at most three levels of
storage. ? ? ?

The above relations are exact. Thus, it becomes clear6. IMPLEMENTATION OF BOUNDARY CONDITIONS
that, if U is known at the boundary, Ki at the boundary
points should be computed according to (6.1). On the otherThe numerical boundary condition is another important

issue in computational acoustics. The results of acoustic hand, when the boundary condition is given in the form
of differential equations, Ki at the boundary points shouldcalculations are particularly sensitive to the errors at the

boundary. In this section, the implementations of boundary be computed from the boundary equations using the same
Runge–Kutta scheme as at the interior points.conditions in Runge–Kutta schemes are discussed. In addi-

tion, the implementations of solid wall and radiation We now discuss the implementation of boundary condi-
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FIG. 9. Numerical results of the spherical wave equation. Plotted are the solutions near the wave front: ———, exact; s, optimized 5-6 scheme; - - -
unoptimized fourth-order scheme; –-– unoptimized third-order scheme. (a) t 5 100; (b) t 5 200; (c) t 5 300.

tions at the solid walls and the far field for linear acoustic
problems. To this end, we consider the linearized Euler
equationsTABLE IV

A Comparison of Accuracy Limits Divided by the Number of U
t

1
E
x

1
F
y

5 0, (6.2)Stages for the Optimized and Unoptimized Schemes

Unoptimized Optimized where
Scheme 3rd-order 4th-order 4-stage 5-stage 6-stage 4-6 5-6

L/number 0.17 0.17 0.21 0.27 0.29 0.32 0.36
of stages U 5 1

r

u

v

p
2, E 5 1

Mx r 1 u

Mx u 1 p

Mxv

Mx p 1 u
2, F 5 1

My r 1 v

My u

Myv 1 p

My p 1 v
2.

Note. The accuracy criteria are that the amplitude and phase errors
be less than 0.001 as in (3.7a).
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In the above, r, u, v, and p are the density, velocities, and respectively, so that the computer run-times are nearly the
same in the three cases. Clearly the optimized scheme givespressure, respectively. Mx and My are the Mach numbers

of the mean flow in the x and y directions. In what follows, the most accurate results compared to the exact solution.
we consider an example of implementing the solid wall
and radiation boundary conditions in which the reflection 7. CONCLUSIONS
of an acoustic pulse from the solid wall at y 5 0 is simulated.
In this example, we take Mx 5 My 5 0. An analysis of the dissipation and dispersion properties

of the Runge–Kutta time integration methods has been
6.1. Solid Wall Boundary Conditions presented for applications with high-order finite difference

spatial discretization. Low-dissipation and low-dispersionPhysically, the boundary condition at a solid wall is that
Runge–Kutta (LDDRK) schemes are proposed, based onthe normal velocity equals zero for inviscid flows. That is,
an optimization that minimizes the dissipation and disper-v 5 0 at y 5 0. Then, from (6.1), since all the time deriva-
sion errors for wave propagations. Numerical examples aretives of v are also zero, the numerical implementation in
presented that demonstrate the efficiency and accuracy ofthe Runge–Kutta schemes should be
the proposed schemes.

The importance of dispersion relations of the finite dif-Ki 5 0 for the normal velocity components. (6.3)
ference schemes has been emphasized in recent works on
computational acoustics. The proposed condition of de-6.2. Radiation Boundary Conditions
termining the time step, (3.8), is based on the wave propa-

The radiation boundary conditions are often derived in gation properties of the numerical schemes. It takes ac-
the form of differential equations. We consider a radiation count of both the spatial and temporal discretizations. This
boundary condition based on far field asymptotic solutions ensures the correct propagation of resolved waves and,
[1, 12] thus, improves the robustness of the computation.

APPENDIX A: DISSIPATION AND DISPERSION
U
t

5 2
U
r

2
1
2r

U, (6.4)
ERRORS IN THE AMPLIFICATION FACTOR

where r is the radial variable. Express the complex amplification factor r of (3.4) as
To couple the radiation condition with the Euler equa- r 5 urue2if and the exact amplification factor re 5 e2is. Then,

tions in the interior region, (6.4) is integrated for the for uf 2 s u and u uru 2 1u small, which is true in the range
boundary grids (in the present calculation, three points of interest in the optimization, we have
inward from the boundary) using the same Runge–Kutta
time integration scheme as in the interior. The spatial de- ur 2 reu2 5 u urue2if 2 e2is u2
rivatives, however, have to be computed using one-sided

5 u urue2i(f2s) 2 1u2differences for the boundary points, where the central dif-
ference stencil cannot apply. Specifically, the explicit five-

5 u uru[1 2 i(f 2 s) 1 ? ? ?] 2 1u2
point boundary closure scheme of [7] has been used in the

5 (uru 2 1)2 1 (f 2 s)2 1 ? ? ? .present calculation.
Computational results are shown in Figs. 10 and 11. The

initial condition is Thus, ur 2 re u2 approximates the sum of the amplitude
and phase errors.

r 5 p 5 e2(ln2)((x2
1(y225)2)/9), u 5 v 5 0,

APPENDIX B: OPTIMIZATION VIEWED AS
with Dx 5 Dy 5 1 in nondimensional coordinates. Shown PRESERVING THE FREQUENCY
in Fig. 10 are the pressure contours at times t 5 0, 100,
200, and 300. The spatial discretization is the seven-point In Section 4, the optimization is carried out by minimiz-

ing the difference of the numerical and the exact amplifica-central difference scheme [13] and the time integration is
the 5-6 LDDRK scheme with Dt 5 1.25. In Fig. 11, profiles tion factors. This actually minimizes the sum of dissipation

and dispersion errors as shown in Appendix A. In thisof the pressure along the diagonal line y 5 x 1 200 are
shown for t 5 300, 400, and 460. The horizontal axis is the appendix, a different view is offered for the optimization

process used in Section 4. We show that the minimizingdistance from the lower left corner of the computational
domain. Also shown are the numerical results using the integral (4.1) also preserves the frequency in the time

integration. As such the LDDRK scheme is dispersion-unoptimized third- and fourth-order RK schemes. The
time steps used for these two calculations are 0.71 and 0.9, relation-preserving in the sense of [12].
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FIG. 10. Numerical examples of an acoustic pulse reflected by a solid wall at y 5 0. Plotted are the pressure contours at 60.1, 60.05, 60.01,
60.005. Numerical boundaries are x 5 6200 and y 5 0, y 5 400.

By (6.1) for linearized problems, it is easy to show that RHS,
the Runge–Kutta scheme leads to

Ey

0
[U(t) 1 c1 Dt

U
t

(t)1 c2 Dt2 2U
t2 (t)

U(tn 1 Dt) P U(tn) 1 c1 Dt
U
t

(tn ) 1 c2 Dt 2 2U
t 2 (tn )

(B1) 1 ? ? ? 1 cp Dtp pU
tp (t)]eigt dt 5 [1 1 c1(2ig Dt) (B3)

1 c2(2ig Dt)2 1 ? ? ? 1 cp(2ig Dt)p ]Ũ,1 ? ? ? 1 cp Dtp pU
tp (tn ),

where Ũ is the Laplace transform of U (for simplicity, we
where ci are identical to the coefficients of the amplification assume that U 5 0 for t # Dt). Next we express
factor (3.4). This will be true regardless of the particular
form of partial differential equations concerned. The above 1 1 c1(2ig Dt) 1 c2(2ig Dt)2

(B4)relation only involves the time derivatives of the solution.
1 ? ? ? 1 cp(2ig Dt)p ; e2ig*Dt.Upon replacing tn by t and applying Laplace transforms

on both sides of (B1), it is found that
Equation (B4) equals the amplification factor r in (3.4)
when g is replaced by ck*. By comparing (B4) and (B2),LHS,
it is seen that g* represents the numerical frequency in
the Runge–Kutta time integration scheme. By replacingEy

0
U(t 1 Dt)eigt dt 5 e2ig DtŨ; (B2) ck* with g in r and re , we have



190 HU, HUSSAINI, AND MANTHEY

FIG. 11. Pressure profiles along y 5 x 1 200. Horizontal axis is the distance from the lower left corner of computational domain; s, numerical;
———, exact. Also shown are the results of unoptimized schemes, –-– rk3; - - - rk4. (a) t 5 300; (b) t 5 400; (c) t 5 460.

ur 2 re u2 5 ue2ig*Dt 2 e2ig Dt u2
(B5)
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